
rename(‘‘open’’, ‘‘swinging_to_and_fro’’);

David Tilbrook (dt@snitor.uucp)

Sietec Open Systems Division

ABSTRACT

The push for open systems is on. The objectives of open systems are to achieve
independence of supplier and/or manufacture, portability of software, and environmental
differences that are transparent to the user. Part of this push must involve the evolution of
a standard software foundation, and in some ways it appears that Unix is evolving as that
foundation.

However, the successful achievement of the objectives of the open systems push depends
largely on the reliability and consistency of that software foundation.

This paper looks at one subroutine rename(2), that has been deemed to be part of the
Posix standard. This paper relates the author’s experience with this subroutine across
some dozen different platforms and configurations, and draws some conclusions regard-
ing the chances of fulfilling the open systems marketing hype.

1. Introduction
The rename function was not part of the early versions of Unix. Its basic functionality was relatively easy
to implement, as discussed later, using the link(2) and unlink(2) system calls. One could live without a ker-
nel implementation of rename, and, indeed, on some systems, one still does so. However, it was imple-
mented as part of the 4.2bsd fast file system extensions and has been adopted as part of the Posix standard,
so examining this subroutine to attempt to prognosticate the future of the open systems effort is not gratu-
itous.

The following is an extract of the UPM manual section for rename. Other variations exist; however, barring
the copious caveats concerning circular directory graphs, and the various error conditions, the basic essence
of rename is as described.

NAME

rename − change the name of a file

SYNOPSIS

rename(from, to)
char *from, *to;

DESCRIPTION

Rename causes the link named from to be renamed as to. If to exists, then it is first removed. Both from
and to must be of the same type (i.e., both directories or both non-directories), and must reside on the same
file system.

Rename guarantees that an instance of to will always exist, even if the system should crash in the middle of
the operation.

RETURN VALUE

A 0 value is returned if the operation succeeds, otherwise rename returns −1 and the global variable errno
indicates the reason for the failure.

-2-

Now, how could anyone get that wrong? Actually getting it right is difficult (see Epilogue #1). There are
all sorts of potential errors, some of which are covered in the parts of the manual section that I did not
include. Certain aspects, such as renaming directories, should be approached with great apprehension. In
fact I do. rename is not provided on a variety of systems on which I have to run my software. On those
systems I have to provide an alternative mechanism to support the basic functionality of changing the name
of a file. Furthermore, there are many situations where using rename arbitrarily can give rise to errors from
which one then has to recover (i.e., cross device links or cross directory renames not supported on some file
systems). Therefore, I limit my use of rename to files within the current directory. An examination of a
variety of rename manual pages seems to indicate this subset of rename’s supposed capabilities avoids
many of the potential errors. Furthermore, by limiting myself to that subset, the rename functionality can
be almost duplicated using the following code:

#include <errno.h>

int
rename(from_f, to_f)

char * from_f;
char * to_f;

{
if (unlink(to_f) == -1 && errno != ENOENT)

return (-1);
/* if we crash here, to_f is gone - sigh
* if from_f cannot be linked we lose as well */
if (link(from_f, to_f) == -1)

return (-1);
return (unlink(from_f));

}

The reader will appreciate that this is obviously less efficient than the true rename in that it uses three sys-
tem calls vs. one, and has the added disadvantage that to_f is unlinked before we are sure that from_f exists
and is the same type as to_f. Howev er, more importantly, the guarantee that to_f always exists, even in the
ev ent of a system crash, cannot be maintained, as noted in the comment. But that’s a risk we have to take,
because on systems that don’t offer rename, we are forced to do so.

For a long time, even though more and more of the systems on which I was running my code supplied
rename, I used the above routine (under a different name) to implement the limited semantics. I still avoid
using rename for any other uses, and I think that that caution is merited, as will be defended in the rest of
this document.

Despite this aversion to using rename to move files or directories, I do now use it to rename files within a
directory. So what’s the big deal?

Section 3 describes seven different situations that I have encountered in using rename, even when I limit
myself to the renaming of a file within the current directory. So if you are thinking that the open systems
push is going to alleviate your porting problems, read on. The problems I have discovered with a routine
whose semantics can be almost duplicated in five lines of fifth edition code, might cause you to think again.
But before launching into these problems, let me discuss installing a file, something one wants to do occa-
sionally.

2. How to Install a file
Inherent in the process of building a system is the problem of copying the new version of the file into its
destination directory. If you just say, ‘‘Use install(1)’’, you have not considered the problem, nor have you
looked at the some 20 different implementations of that command. Furthermore, you are probably dealing
with very small software system, because the customary sh implementation is excessively slow when deal-
ing with thousands of files. But the efficiency is a minor consideration — the inconsistency of the interface
is not, but we will ignore that problem for now.

-3-

The major failing of the standard shell implementation of install is that it is woefully naive and far too trust-
ing!

When one is installing a production file, one must take all the measures one can to ensure that the installa-
tion fully succeeds or fails noisily! Furthermore, one must ensure that one never leaves the system in a
state in which neither the new copy nor the old copy is available and usable! For those of you who have
never experienced it, let me assure you that trying to cope on a system that failed to correctly install a new
copy of /bin/sh, but not before it removed the old version, is not a pleasant nor relaxing situation.

It is to provide this guarantee that rename should be used.

But it is not that simple. Often one has to manipulate the file once it has been installed (e.g., apply strip or
ranlib). Without further ado, I use a program called instal which is now briefly explained, as is very good
at manifesting and detecting problems with rename.

Due to its complexity and importance, instal provides a −X flag, in addition to the ubiquitous −x flag. Its
output is presented below and rationalized.

% instal −X
instal [flags] targetdir/file newcopy will do the following:

if targetdir does not exist
mkdir targetdir [1]

if targetdir/@nfile exists
unlink targetdir/@nfile [2]

copy newcopy targetdir/@nfile [1,3]
if size(newcopy) != size(targetdir/@nfile)

abort # check if yet another F.S. failure
chdir targetdir [2]
if −r flag ranlib @nfile
if −s flag strip @nfile
if −o or −g flags chown/chgrp @nfile [4]
if −M flag chmod @nfile [4]
if file exists {

if @?file exists [5]
unlink @?file

link file @?file [1]
}
NOTE: @nfile exists and file does not or is linked to @?file
rename @nfile file [1,2]
if @?file exists and ! −k

unlink @?file [6]

[1] Check if successful using stat(2) − abort if not
[2] abort if returns −1
[3] this is a built-in copy − cp(1) not used to save time

and to facilitate checking the result of every write
[4] aborts if −1 unless −I flag specified
[5] To deal with problem on systems that prohibit removing a ETXTBSY

file and other situations when a file might not be removable,
instal iterates over ‘@[0−9]file’ until one is found that
does not exist or can be successfully unlinked.

[6] Failure ignored if due to busy text file,
otherwise aborts.

Note the following:

This happened to us once at the University of Toronto in 1975. It was exciting and yet worrying, and the group
that was involved in the recovery involved a Duff, a Reeves, a Tilson, a Tilbrook and others of similar stature.
Note spelling change to ensure that the correct version is used, no matter setting of ${PATH}.

-4-

• instal copies the new file into the target directory, but not to the ultimate name. The copy is done to a
temporary name, thereby protecting the old version until the new copy has been fully installed in the
directory and any subsequent processing has been completed.

• The success of the copy is checked by both examining the result of every write(2), the close(2) and
then (since I am a paranoid) by checking that the size (as retrieved using stat(2)) has not changed.

• We do not rename the new file to the new location before the old version has been safely linked to a
new name. This process is complicated by the possible need to try multiple names before the link
can be successfully performed.

• Unlinking the old version is immediately followed by linking in the new version, with absolutely no
intervening processing! These operations are combined using rename if possible. This is essential
since once the unlink of the old file has succeeded, the program does not exist under its usual name
— think again about a crashed system on which /bin/sh does not exist.

Okay ... let’s get back to rename which is supposedly the subject of this paper. The desirability of using
rename in the above processing should be obvious. Its guarantee of preserving the to file is necessary. But
before moving on, consider the following two points:

1) instal is used to install instal itself and other programs that might be ‘‘busy’’. This is why care is taken
to link the current version of the target file to the temporary @?file so that the ultimate rename that
unlinks the original and links in the new file does not destroy the last link to a busy text file.

2) Some versions of make, including our variant mimk, run processes in parallel. Consequently the situa-
tion in which multiple instals are manipulating links within the same directory arises often. However,
the same file is never inv olved in parallel renames.

3. Six different permutations of rename, plus the degenerate case
I believe that I have now demonstrated the important of having a rename function. The following sub-sec-
tions describe experiences I have had with rename via the instal program. With the exception of the sixth
case, each of the cases exist on one or more of the systems attached to our network. The reader should also
keep in mind that I am limiting my use of rename to regular files within the current directory, thereby elimi-
nating problems that can arise due to busy directories, cross device or directory links, circular paths, etc.

3.1. Behold — a working rename
There are systems that actually supply a rename function that seems to work — well, let’s say that I have
not as yet detected a failure due to a software bug. I mention it to demonstrate, through an existence proof,
that it is possible.

3.2. rename undefined
As mentioned, there are relatively new systems that still do not provide rename. Howev er, of the seven sit-
uations listed in this paper, this is the second easiest with which to cope. If one cannot have a working ver-
sion, one is almost better off with no version at all. One is faced with the problem of where to put the
unlink/link/unlink implementation and how to adapt imported software that expects it to be in place, but this
is a situation with which I am well familiar.

3.3. rename defined — as a no-op
There is a version of rename, distributed by one organization that does nothing — absolutely nothing! It
does not rename the files, it does not return −1 — whoops I tell a lie — it does something — it returns 0,
which is not exactly nothing, but very close to it.

Yes Viceginia, there are file systems on which copying a file can change its size (even ignoring sparse files such
as those created by dbm).
Machines on our network currently include targon35s (pyramid) using both att and ucb universes, apollo 3500s
(bsd side), mips (bsd side), mx300s (att side), wx200s, m88ks, an old sun3, and various 386s. All constructions
are done using source accessed via NFS to one of the targons. With the exception of the sun, all constructions
are done on a local disk. All installs are to a local disk.

-5-

This situation is actually not the most unpleasant, as the problem is discovered the very first time one tries
to use rename(2). In this situation one immediately treats the offending system as if rename was undefined.

3.4. Almost works — just one minor (detectable) glitch
Remember how I stated how instal was to install itself? There is yet another variation on today’s theme in
that there is a rename that works everywhere, except when trying to rename a busy text file (e.g., instal).
We hav e not seen any mention of this situation being illegal. In fact on the same system, the
unlink/link/unlink simulation works as the link increments the link count thus the unlink does not reduce it
to zero. Some implementations of unlink legitimately object if an attempt to remove the last link to a busy
file is attempted, but rename should not raise this condition when the busy file is the from file. So, on such
systems instal checks for errno==ETXTBSY after a failed rename call. If the test is positive, the
unlink/link/unlink simulation is used.

Discovering if the system’s rename exhibits this errant behaviour is simply a matter of compiling and
executing the following program:

main()
{

if (rename("a.out", "new.out") == -1) {
perror("a.out");
exit (-1);

}
puts("might have worked... please check new.out exists");

}

3.5. Almost works — just one minor (undetectable) glitch
Some un-named manufacturer has distributed in the past a version of rename() that frequently fails to work
when trying to rename a file on a remote file system. Unfortunately, trying to detect that the rename failure
is due to a file system time out is difficult to do in a consistent and portable way. Furthermore, it goes
against my paranoic nature to try to second guess hard errors.

The only course of action is to restart the building process, which almost inevitably completes successfully
the second time. This success-on-second-try phenomenon may be due to the fact that the second run is usu-
ally done after the constructions on all the other parallel construction streams have completed, thereby with
a much reduced network load.

It is not definite that this occasional failure is due to a rename bug, but because its second time success rate,
and the rarity of occurrence on a relatively unimportant system, it has not merited much investigation. It’s
mildly irritating, but not as much as the next two situations.

3.6. Panic — it’s multiple renames
Surprisingly, the version of rename that frequently caused a kernel panic is not the most unpleasant, but it’s
close. This implementation of rename seemed to cause the system to get its knickers in a twist when multi-
ple renames were being run in parallel. The result was a kernel panic and a mildly corrupted file system,
usually in the directory in which the renames were attempting to function when so rudely interrupted.

The solution in this case was initially to eliminate the parallel runs, and ultimately to change jobs.

3.7. Panicking would be preferable.
Finally the ultimate rename disaster. The most recent new port of our software gav e rise to a situation on
Unix with which I was previously unfamiliar. Way back when — circa 1977 — I saw a directory created in
which the normal ordering of .. and . was rev ersed. It was amusing, yet not unhealthy. Howev er, until I

Our major system builds are done as three parallel job streams, each stream processing three or four of the plat-
forms or configurations. All the constructions use the same remote source file system, via our LAN; conse-
quently the network is usually fairly busy servicing three job streams, each of which is running multiple parallel
compiles.

-6-

encountered the rename bug described in this section, I have nev er consciously seen a directory with dupli-
cate entries, that is two entries in the same directory, with the same name, referring to the same inode.
Again, this is not as unhealthy as it might seem — provided the inode’s link count includes both entries.
Unix is fairly adapt at handling multiple references (i.e., links) to the same file. The name, for the most
part, is irrelevant, once the directory search has retrieved the inode number. You would find that, if was
possible to create two entries in a directory with the same name, the file system primitives and tools
(notably rm) would all work properly. This is, for the most part, true, even when the duplicated names had
different inodes, although specifying or predicting which inode was used could be difficult.

Unfortunately, if the inode link count does not include the duplicate entry, which is the situation produced
by this rename bug, the file system is mildly corrupted, but soon to be dramatically corrupted as soon as
one of the duplicate entries is unlinked. This will reduce the inode link count to zero, thereby returning the
still-in-use inode and disk-blocks to their respective freelists.

The first time that this situation arose, the full system construction had completely, supposedly successfully,
at which point the file system integrity checking package aborted on a sequence error. Thus, detecting this
problem proved to be yet another defence of one of Dr. Tuna’s Software Hygiene Nostrums [Tilbrook 90]:

• Create and frequently use a file system integrity package that checks for spurious files, missing files,
obsolete files, and so on.

It was the ‘‘and so on’’ check that revealed the problem. The comm(1)-like process that compares the
installed file list against the master list aborts on sequence errors and duplicated lines — something which
comm does not do, hence its replacement. Naturally, I assumed initially that the sequence error was in the
manually maintained master list. However, upon rerunning the package the same sequence error was
reported indicating a sequence error or duplicate line in the following command’s output:

find . −print | sort

My experience with sort is that it works almost without fail, so I ran:

find . −print | sort | uniq −d

There were dozens of duplicate lines, a situation I had never experienced in my previous 16 years of Unix
use. Furthermore, I discovered dozens of files pointing to the wrong contents, probably due to an in-use-
inode being reallocated to a new file. Recovery was difficult and time-consuming — I had to remove the
entire production tree and start all over again. It did have one positive effect. I was forced to create yet
another regression test that actually checked that, not only did the required programs exist in the right direc-
tory, with the right modes, but they also contained the right contents.

Further experimentation with the strengthened installation regression testing suite definitively fingered yet
another problem with rename.

This problem was the most difficult to detect. It was also the most insidious in that it caused the most dam-
age and required the most effort to repair and rectify. The solution was to eliminate parallel instals by
reducing the maximum number of parallel processes executed by mimk (the D-Tree make replacement) to
one. Since doing so, the file system has remained relatively healthy.

4. Conclusion
As stated in the abstract, the successful achievement of the objectives of the open systems push depends
largely on the reliability and consistency of the software foundation.

My use of an extremely simple and basic, yet essential, function, that has been deemed to be part of that
foundation, has yielded a dismayingly wide range of compliance and quality. This leads one immediately
to the conclusion that the suppliers’ approaches to system validation is less than rigourous.

Note that, in the event of a system crash during a rename function, the link count for the from file might actually
be one higher than it should be. This is because the from link count is incremented before the to entry’s is set to
that inode. But, this is a situation that may be harmlessly rectified by fsck when the system is rebooted.
Mind you, its performance is pretty abysmal on some of our 386 systems.
The test was to run all the programs with the −x flag, which generates the program’s synopsis and description,
and compare the collected outputs against a master list.

-7-

rename is a function that can be tested relatively easily. Checking that a call to it works is easily done using
any number of standard tools (e.g., ls) or mechanisms (e.g., stat). Actually, rename is so fundamental that
it is rather surprising that its failure is not detected fairly quickly by the supplier through normal system use
— assuming suppliers actually use their product before they ship it. I detected the problems in the five
buggy versions through normal use.

If suppliers have problems creating and testing a function as simple as rename, am I wrong in thinking that
they might have similar problems when it comes to more complicated routines with much broader domains,
such as semaphores, sockets, signals, process control, programming languages, or window managers?

Am I unjustified in being publicly critical of some of the suppliers who exhibit what can only be interpreted
as gross negligence in the interest of marketing or politics?

I do not have a lot of confidence in the current batch of suppliers. The cited problems with rename form a
very small, but highly representative, subset of the problems I have discovered in trying to maintain our
products on 9 different platforms simultaneously.

What can one do to improve this gloomy forecast?

Hit them where it hurts — in their commission belts. When some salesman starts promoting his/her prod-
uct as a wonderful, leading edge open systems approach solution to your problems, say:

‘‘Oh yeah? Tell me how you test your rename(2).

Then we’ll get on to things that aren’t trivial!’’

Bibliography

Tilbrook 90b David Tilbrook and John McMullen, Washing Behind Your Ears − or − The Principles of
Software Hygiene., Keynote address, EurOpen Fall Conference, Nice, 1990.

5. Epilogue #1
To verify the origin of the first rename I called Kirk McKusick. In our conversation he told me that when
he presented the design of the new directory format and the kernel implementations of the mkdir, rmdir,
and rename functions to the 4.2bsd review committee, Dennis Ritchie questioned the wisdom of allowing
one to rename directories. Dennis thought that it would be very difficult to get right. Kirk then went on to
state that Dennis’s insight was correct: implementing rename was one of the most difficult coding tasks he
has ever done. Furthermore he related some problems that I have not discussed, but occur even when we
limit the analysis to renaming files within the current directory. For example, consider the problems of
executing any two of the following calls in parallel:

rename("alpha", "beta");
rename("alpha", "gamma");
rename("gamma", "alpha");
rename("beta", "alpha");

while ensuring the guarantee that the ‘‘to’’ file existed, even in the event of a system crash.

Granted ... getting it right is difficult, but not impossible.

6. Epilogue 2
Initially this paper was written quickly, without any intended destination or audience. It was just a case of:
‘‘this mess should be documented’’. In the absence of a formal outlet, I mailed a copy to another renowned
curmudgeon, Barry Shein, of Software Tool & Die.

The next day, I received a reply, which contained in part:

‘‘That rename() grump is a good one, a good sermon. It’s worse than you state, at another level. The world
is now going nuts.

Examining the variations in the interpretation of the C language’s semantics would be another, much longer,
paper. Discussing coping with different releases of a window system is a thesis.

-8-

Under BSD and all versions of Sun/OS previous to 4.1 that I know of, the SYNOPSIS for the manual section
for rename (and many similar ‘‘from−>to’’ kind of calls) looked like:

rename(from,to)
char *from, *to;

as you mention. Now, in some sort of rabid attempt to be SVR4/POSIX/1003 or something compatible,
someone decided to change all those SYNOPSIS to:

rename(path1,path2)
char *path1, *path2;

Now, isn’t that precious? What might have motivated a company to call forth their legions of tech writers
to change these manual pages in this way?’’

Given that new synopsis, how long do you think it will be before I can add an eighth case (the one in which
the arguments are reversed) to my list?

