
The cat -v discussion is irrelevant

David M. Tilbrook

Imperial Software Technology

ABSTRACT

"This feels like a Republican victory party ..." -- Vic Vyssotsky, 1985

The so-called UNIX-philosophy has been preached from the pulpits by the high-priests of
orthodoxy at many a UNIX conference. Does this zealous fervour have any connection
with the failure of UNIX to make any significant advances in recent years? Why are
there large areas of computer science that seem to be ignored by the UNIX world and
why is that when some areas are attempted on UNIX they prove to be as unworkable or
cumbersome as they were on the more traditional environments? This paper is a highly
personal view by one who has been dismayed by the failure of the UNIX community
(himself included) to make any significant advances in real-time systems (whatever they
may be), software engineering (something palatable at least) and a variety of other prob-
lems.

"The first clue something is wrong with APL is that whenever two APL users/programmers get
together they start discussing extensions to the language." -- Tom Duff, 1975

This is not a attack on the ‘cat -v’ talk or ideas. For the most part I agree with Mr. Pike’s main points.
However, I do feel that there have been two major problems with respect to the original talk:

1) Many people reacted with misdirected hostility to BSD, a system that has made tremendous contribu-
tions to the community in some areas and certainly provides a much superior environment to other
available environments for certain applications;

2) The arguments were largely expending energy in the wrong direction, concentrating on minor issues
(i.e., stylistic points such as flags to commands) rather than fundamental problems with current UNIX
implementations and uses.

I am not going to defend the first point. There are large parts of the BSD system that I find dismaying.
However, my experience with the commercially available alternatives has been far from pleasant [1].
Rather, I would like to put the case that the arguments and discussions about UNIX are highly reminiscent
of the APL hacks discussing the ravel operator. The fundamental limitations of the system are not going to
be overcome through either stylistic adherence to a set of loosely defined principles or the power coding of
myopic hackers in universities of vulture capital shops.

It is high time that the UNIX research community recognize and accept that it is time to apply one of the
so-called UNIX philosophy principles; that one should be prepared to throw out tools and start again, and
the tool that should be thrown away is UNIX itself.

To defend this position is difficult and unpopular. Such a move threatens many people. There is a huge
investment in UNIX at both the individual and corporate levels. Indeed I am not proposing that everyone
rip up their licenses. There is a large segment of the UNIX world that must continue to use UNIX and will
do so for a long time. However, UNIX’s successor is not going to be reached by constant enhancement of
the current system: neither is it going to evolve in parallel with what is becoming a major obsession within

[1] When the Cambridge conference panel was asked to choose between 4.2bsd and System V, five of the six
members chose 4.2bsd. The sixth chose V8, which is not commercially available.



-2-

the UNIX community, that of satisfying the market place.

It is essential to recognize that the evolution of UNIX thus far has been less than graceful and the ‘real’
progress less than spectacular [2]. I recognize that there have been improvements in some ideas and facili-
ties and that some have definitely been of major importance to the computer science community (e.g.,
Make). However, there is little evidence that there will be any change in the way UNIX evolves and a great
deal of evidence that progress is going to be hampered by commercial interests.

This gradual decrease of progress and the accompanying increase in complexity and problems (i.e., bugs) in
a system’s ‘middle age’ is not unprecedented. In fact it seems inevitable. What sufficed or was deemed
unessential in a system’s beginning in the interest of meeting initial requirements or objectives inevitably
become insufficient and essential as the system’s use and its users’ objectives change.

In the case of UNIX, the initial developers created a system that was the well designed integration of four
or five good ideas. It was relatively conventional in approach, on a popular machine, fairly small and
understandable, etc., etc., etc. It was not designed to do everything. In fact certain areas were deliberately
excluded (e.g., Real-time, IPC, data-base support) and it was there that the problem began.

There were many efforts to shoe-horn the missing parts into the UNIX environment. This was done out of
a need to handle certain applications (e.g., real-time in MERT) while simultaneously taking full advantage
of the tools and facilities offered by the base system. Sometimes UNIX was sold into areas which were
completely outside the UNIX realm and required substantial developments to satisfy the needs of those
areas. For example many of us are guilty of building applications which are ill-suited to UNIX, but
required if UNIX was to be available to us for our own uses (e.g., COBOL compilers, RT-11 emulators,
data-base systems).

From a small two person development, UNIX exploded into a mega-project with rapidly expanding and
diversifying objectives and applications, and as is inevitable, rapidly decreasing coherence and quality.

Furthermore, due to the nature of the UNIX community, some problems have been tolerated due to cost of
rectification, and certain application areas have either been ignored (as not being of interest) or developed
by teams who lacked sufficient UNIX-experience to ensure that their implementations were compatible
with the rest of the system [3].

To catalogue all the sins and follies would take too long. The list of things UNIX does not handle or han-
dles poorly should be obvious to anyone who has used it for any period of time or who has tried to bend it
further than it yields (e.g., trying to ensure reliability when signals must be handled). My own major con-
cerns relate to controlling multiple process applications (what facilities exist are primitive, undisciplined
and complicated [4]), to documentation which is largely unchanged in 15 years (why do people still insist
on orienting documentation to paper output [5]) and a seemingly inability of suppliers to adequately test
their products (I mention no names). These are just some of many areas where UNIX, whilst offering a
good solution for 80% of the problem, seems sadly deficient for the remaining 20%. Others have expressed
views about its inadequacy on large systems (it was initially a small-machine system) and the problems
with security and reliability which are likely to remain unsolved.

[2] I ignore the commercial and marketing success as being of little interest to the researcher except in that it
has meant increased availability.

[3] Signal handling is an area that is largely unchanged since the early days of UNIX despite the fact that it is
extremely difficult to create reliable systems that avoid all possible race conditions. SCCS is a splendid exam-
ple of a non-UNIX tool in the way files are named, and input and flags are handled. Worst of all is the difficulty
encountered in managing large numbers of related source files, facility of UNIX that has proved to be so impor-
tant.

[4] There is a glimmer of hope that streams can offer some relief in the area of multiple process control and
communication. However, it is unlikely, when commercially available, that a style of use will have evolved that
will provide the ‘standard’ way of building systems from components. Part of UNIX’s success is due to the fact
that the developers used and tuned it for a number of years before its release to the outside world thus had time
to experiment sufficiently to develop (perhaps unconsciously) a ‘standard’ approach to software and its combi-
nation.

[5] The answer is of course so they can sell books to a captive readership and documentation reading soft-
ware packages to those who recognize paper is inadequate.



-3-

Having complained a great deal about the system, I should now propose a solution. However, I recognize
that as I am a long-time UNIX user I am no longer qualified to create such a system. It is unlikely that the
next generation of the research computing environment can come from the UNIX community itself. I hope
that the developers will be aware of UNIX’s strengths, however, a team whose primary background is
UNIX will probably not recognize a solution to a problem (unless it is called grep) without trying to cast it
into the UNIX mould.

If this is the case, what role can the UNIX research community play in the advance to the ‘UNIX’ replace-
ment?

Our first priority is to recognize our true requirements for a computing environment. Such an evaluation
should be done without regard to actual implementation considerations. This is an ambitious assignment,
which must be done, however, to evaluate other solutions with respect to their acceptability. Such an evalu-
ation should be done on the basis of how well it fulfills our particular needs, not our prejudices towards par-
ticular solutions.

Secondly we must understand how the basic UNIX features or facilities succeed or fail in fulfilling our
needs. To demand the existence of a facility without an appreciation of its true importance or value can be
dangerous. For example, it is unlikely that any system that does not provide some sort of hierarchical file
organization would be acceptable to most of us. But why? Can we honestly reject a system that doesn’t
provide such a file system on that basis alone? Far too often users fail to recognize the difference between
a requirement and a partial fulfillment of that requirement.

Finally we must be prepared to honestly accept UNIX’s short-comings and be prepared to evaluate alterna-
tives without prejudice. To continue to design or code around UNIX short-comings is too costly and it is
unlikely that some of the rare ‘real’ advances (e.g., streams, C++) will be available without unacceptable
costs [6].

The last task is the most difficult to accomplish. The UNIX community has worked very hard at promoting
UNIX for their own needs and in many cases are now unable to separate the marketing hype from the true
value. We hav e been telling each other how wonderful the system is for so long that we are in danger of
suffering from the symptoms discussed in the following article from The Guardian, Saturday, August 31,
1985, entitled: "What the team thinks is wrong"

"Group think" can be self-defeating, said Dr. Pat Shipley, an occupational psychologist, at a
session on ergonomics, the science of the workplace.

"Group think was used to describe the British Cabinet’s deliberations leading to the Falklands
war," said Dr. Shipley.

The irrational dimensions of group think underlying impaired critical judgement included: the
group protecting itself from adverse information with self appointed mind guards; stereotyping
the enemy as too stupid to be a threat, or too evil to negotiate with; dealing with challenges to
cherished values and assumptions by ignoring them or rationalising them away.

I hope that I am wrong.

[6] It has been announced that future releases of UNIX for the VAX will not be forthcoming from the origi-
nal supplier and, from my experience, the alternative offered is not a pleasant one.


