Zen and the Art
of Software Maintenance
CBC.ca WebEd
David Tilbrook

dt@qgef.com
Dec. 1st & 2nd, 2003

-
Gozir
o

Zen & the Art of SW Maint.
Preface

-
Gozhr
o

Zen & the Art of SW Maint.

Overview

-
Gozhr
o

"Working on a
motorcycle,
working well,
caring, is to
become part of
a process, to
achieve an inner

peace of mind."

® Objectives of this Presentation
® The Pursuit of Quality

® Project Failures

® Software Hygiene

® Rolling Release Engineering

® Large Scale Project Maintenance and the
Individual Programmer’s Role

@ Architecture for a Well Maintained System
= The Principle of Locality
= Source Organization and Work Flow
= The Gatekeeper

® The CORE (Controlled Requirements
Evaluation) System

ROBERT M PIRSIG = Introduction
Robert M. Pirsig = Break Out session exercise
o : Tn;izmv:%t 2:::‘?(65 ® The Development Process
%"& AND FEEL ABOUT YOUR LIFE = Change Control
= Testing
CBC.ca WebEd —2— Dec. 1st & 2nd, 2003 CBC.ca WebEd -3 - Dec. 1st & 2nd, 2003

Zen & the Art of SW Maint. = %

Q.

Zen & the Art of SW Maint. = %
Objectives of this presentation =

Zen & the Art of SW Maint.
The Pursuit of Quality

-
Goznr
L 3

Q.
Schedule -
Day 1
® 1:00-2:30 Introduction, Software Hygiene,

Architecture, ...
@ 2:30-3:00 Break

® Understanding causes of failure

® Appreciation of hygienic approaches
® Examining the process

® Exploring your role

® Quality is elusive
® Q.A. necessary but not sufficient

@ Need to ensure that individual efforts
properly incorporated.

@ 3:00-3:30 CORE and Break Out . Encouraé;e you to think about how you ® Need to ensure that developers’ intentions
Instructions work and play with others are realized in delivered product
. ; = assuming of course they understood
@ 3:30-4:30 Break Out Exercise ® Attributes of a good process the requgements and specification
® 4:30-5:00 The Development Process ® Need to ensure product installed flawlessly
Day 2 ® Need to ensure testing is valid
® 1:00-2:00 Team Presentations & - gvrl‘.at is geing tested is what will be
i elivered.
ncluding Remarks
Co 9 = What is delivered has been tested
= Testing a system that is not delivered
is a waste of resources
® Q.A. should be proactive
rather than reactive.
CBC.ca WebEd -4 - Dec. 1st & 2nd, 2003 CBC.ca WebEd -5 Dec. 1st & 2nd, 2003 CBC.ca WebEd -6 — Dec. 1st & 2nd, 2003

Zen & the Art of SW Maint. = = |
Project Failures >

® Quality jeopardized by complexity
of process involving large team

= Management is complex

= Assuring that work being done is
relevant is difficult

Many problems introduced during integration

Problems arise due to discrepancies in
environments

= |BM study showed that > 65% of bugs
introduced during bug fixing

@ Version skew a constant threat

@ Distributed development necessary but
complicates ensuring appropriate
environment

@ Deficient construction approaches can
invalidate developer’s testing.

= What they are testing is not what will
be delivered.

Zen & the Art of SW Maint. 3013.{
Software Hygiene -

Zen & the Art of SW Maint.
Why Bother?

-
Gozhr
»

Purpose
® To maintain healthy projects
= through application of simple principles
and practices.
Difficulties in projects
@ Often not the result of deep technical
problems
® Often due to lack of basic hygiene
= failure to co-ordinate activities and products
= principles of hygiene violated

Caveat
® Hygiene itself will not ensure success
® Must have effective tools and methods

® Hygiene must be at the heart of the
software process

Ultimately
® Nothing spectacular from its presence
® Effects of absence can be failure

CBC.ca WebEd -7 - Dec. 1st & 2nd, 2003

CBC.ca WebEd —8— Dec. 1st & 2nd, 2003

CBC.ca WebEd -9 Dec. 1st & 2nd, 2003

Zen & the Art of SW Maint. = = 1 [Zen & the Art of SW Maint. = = | [Zen & the Art of SW Maint. = -
sSw Hygiene Principle (1) © s e sSw Hygiene Principle (2) © s e sSw Hygiene Principle (3) © s e
Principle 1 Principle 2 Principle 3
Everybody involved in the project should know Achievement of the overall project objectives Both individual objectives and overall
the objectives of what he or she is doing. should follow immediately from achievement project objectives should be realistic.
® know what you are trying to accomplish of all |nd|V|dulaI obJe(.:tlves. @ no factor more damaging than unrealistic
® if requirements are ill-defined, problems ® seamless integration goals
will arise if people act as if they are ® rigourous testing ® people are invariably overly optimistic
well-defined - about what they can do and especially
® good communication how quickly they can do it
= many do not realize that an eight-hour
work—day does not mean eight hours of
productive work
CBC.ca WebEd - 10 — Dec. 1st & 2nd, 2003 CBC.ca WebEd - 11— Dec. 1st & 2nd, 2003 CBC.ca WebEd - 12 - Dec. 1st & 2nd, 2003
Zen & the Art of SW Maint. 3 = | [Zen & the Art of SW Maint. 3 = 1 [Zen & the Art of SW Maint. = = .
sSw Hmiene Principle (4) ¢ & sSw ngiene Principle (5) ¢ & sSw Hmiene Principle (6) ¢ &
Principle 4 Principle 5 Principle 6
There should be a known method for Changes should be controlled, visible, and of Both people and products should be
addressing each individual objective. known scope. insulated from the effects of changes
@ quick and dirty leads to costly and buggy @ make sure people understand use and that are not (currently) of relevance.
in the long term purpose of the versioning system ® Others should not see a change until
® do it right the first time and if you ® need to be able to pre-determine what it really. is ready and has been tes.ted.
don’t know how to do it right: impact a change will have on entire = Testing should be comprehensive
duct enough that all those affected (within
= steal from someone who does, or pro reason) are covered.
= take time to design solution > 50% of cost of software is due to change ® Try to reduce visibility of details not
= doing it right usually should mean relevant to others
doing it once and only once > 65% of bugs introduced during changes = eg. in C everything that can be static
should be static
® Ensure that change that is relevant is
done so that those affected will react
or be informed properly
= use centrally declared prototypes
= use most pedantic options and eliminate
all warnings
CBC.ca WebEd - 13 - Dec. 1st & 2nd, 2003 CBC.ca WebEd - 14 - Dec. 1st & 2nd, 2003 CBC.ca WebEd - 15— Dec. 1st & 2nd, 2003
Zen & the Art of SW Maint. = = 1 [Zen & the Art of SW Maint. = = | [Zen & the Art of SW Maint. = = |
sSwW Hmiene Suggestion (1) s & sSw Hygiene Suggestion (2) s & Descriptions? s &
) . A common mistake is to use terminology such
Suggestion 1 Suggestion 2 as "requirements analysis”, "design"”,
Focus on the process as a whole, rather than Invest more effort in “higher level” descriptions. “specification”, "implementation”, etc.
on the (final) product. @ test your descriptions ® Such terminology gets in the way.
® hygiene is an attribute of the process by ® desi) :
: " gn mechanisms whereby your The Software Transactional Model
which the product is produced implementation of a description can be -V -
verified
® too many people still rush into code Ti
@ the earlier a bug is specified,
the more costly itis
® misinterpretation of descriptions Description Di in language Li transformed
can jeopardize an entire project using transform Ti into description Di+1 in
language Li+1 and then verified using Vi
® A transform T could be stepwise refinement,
recursive descent, decomposition,
composition, a tool (e.g., cc), a human
interpretation
® A verification V could be a human review,
a testing process, ...
CBC.ca WebEd - 16 — Dec. 1st & 2nd, 2003 CBC.ca WebEd - 17 — Dec. 1st & 2nd, 2003 CBC.ca WebEd - 18 — Dec. 1st & 2nd, 2003

Zen & the Art of SW Maint. = = 1 [Zen & the Art of SW Maint. = = | [Zen & the Art of SW Maint. = -
sSw ngiene Suggestion (3) s & e sSw Hygiene Suggestion (4) s & e sSw Hygiene Suggestion (5) s & e
Suggestion 3 Suggestion 4 Suggestion 5
Co-ordinate activities as well as products. Adopt a strict policy on project phases. Provide more semantic information to the
® Too much focus on CM ® Expectations are usually unrealistic configuration management and build systems.
- tion 2 @ Need to extend prerequisite relationships

@ Not enough focus on activities . ;:1 Stee; sugges Io-nb| o |- beyond the syntactic if possible.
® Need t | del ot always possible to judge realism)

er?ceom(;)) :svs?r:l; é:(())twmon moae of objectives at project start ® Software CM needs to be more consistent

o) with modern approaches in other areas
® Can compensate by sub-dividing project

into self-contained phases

= sub-projects should themselves be treated
as separate projects

® Scheduling and timelines adjusted as
sub—phases near completion

@ Client may be reluctant to accept
open-ended scheduling, but it is in the
client’s own best interest.

CBC.ca WebEd - 19 - Dec. 1st & 2nd, 2003 CBC.ca WebEd - 20 - Dec. 1st & 2nd, 2003 CBC.ca WebEd - 21— Dec. 1st & 2nd, 2003

Zen & the Art of SW Maint. = = Zen & the Art of SW Maint. = = Zen & the Art of SW Maint.

® »
QBERF QBERF QBERF

Conclusions S S e Software Nostrums S S e Rolling Release Engineering S S e

Poor hygiene is prevalent since people A major objective of process is to provide
are usually too engrossed with technical the mechanisms whereby a product is
demands and details. ® One and only one source maintained in constant readiness to be
released on demand.

@ Give adamn

They lose sight of big picture. ® The source is the product

® Ensure production complete and An important attribute of release readiness
Ask yourself: deterministic is the assurance that the product, as built,
® are objectives for activities clearly and ® Ensure everyone understands process released, and shipped today, can be

reproduced exactly at some future date by
® Test, test, and test again simply extracting the appropriate source
files from the version system archives and
rebuilding the product in its entirety.

precisely defined?

@ are there activities for which objectives are . .
unrealistic? ® Avoid S|multaneous. dramatlf: changes
® how are results from individual activities ® Adopt standard project architecture

combined to meet objectives of overall ® Do post mortems on bugs and failures

project? ® Remember two primary objectives:
@ are there effective mechanisms for = have fun

coordinating changes and limiting scope

of their impact?

The use of incremental builds can be an
impediment, but the following can help:

@ the separation of the baseline
and working source trees

= make money (or whatever the equivalent ;
is at the people’s network). ® bare metal builds

® file system integrity checks

CBC.ca WebEd - 22— Dec. 1st & 2nd, 2003 CBC.ca WebEd - 23 - Dec. 1st & 2nd, 2003 CBC.ca WebEd —24 — Dec. 1st & 2nd, 2003

Zen & the Art of SW Maint. = = 1 [Zen & the Art of SW Maint. = = | [Zen & the Art of SW Maint. = = |
System Architecture: Intro s & Large Project Organization s & Work Flow s &
A Well Maintained System’s Architecture ® Single rooted tree Prod i
. L = Root contains directories for admin,
® Desirable Characteristics testing, and component directories <=
= Clean production . . }o
» Consistent w.r.1. product sources ® Well partitioned into components that -(_
installation, a'n'd'tgstinz] urees: can be built independently i :’b
= Adaptable to changing requirements '_ See Prmmpl(le of Locality (see slide 30) Pmdﬁct\s .
= Universally helpful w.r.t. support ® Single pass build, except may have ~ Objects
and maintenance separate passes for Man and Post

v
® Goals: processing Fé}’} :
) ® Dependencies on other projects to be

= Extendable

satisfied by those projects’ installed 5
= Reusable products — do not reference their source. Development 0\0b
= Compatible .
= Portable Working
= Verifiable *VS The version system vault
R3.4 A baseline extracted from *VS

Working A developer’s working tree, preferably
containing changed files only

Objects The build trees

Products The installed products

Zen & the Art of SW Maint. = =

Gohr Zen & the Art of SW Maint. = - Zen & the Art of SW Maint. = -
Work Flow (2) s & The Gatekeeper S & & The Principle of Locality S & &

=

3
Development.,

AL

@ Release management maintains a baseline
and installed release based on it.

= Should be separate products for each
required and active configuration.

® Each developer extracts files to be changed
into their own sparse working tree (a.k.a.
sandbox). New files created in working tree.
= Development builds are done in separate
object tree, referrin Pto baseline for missing
sources, and installed product for missing
prereqwsﬂes

® Developer submits changes to *VS through
approval or Q.A. process after which changes
will appear in the baseline, thus becoming
visible to other developers and Release
Management.

Approval Process??
® See Principles 5 & 6

Need to make changes visible in controlled
and non-interfering manner as requirements
dictate.

@ If your software is mission critical, changes
should be reviewed and tested thoroughly
before going Prime Time.

® |f your changes fail, your primary
responsibility is to fix them A.S.A.P.
= Correct immediately, or
= Back 'em out!

@ Gatekeeping role should be responsive
enough to encourage and support small

changes to minimize time required for
submission and approval.

= Easier to test.
m Easier to find and fix problems introduced.

® Approval process should not delay further
development.

Within any sub-project:

® Prerequisites are limited to installed product
or self references.

= May not refer to another project’s source
or uninstalled byproducts

= Must use installed version as would exist
for installation up to that sub—product.

® Dependencies limited to sibling directories
= ie, ./auntie/...

= Try to avoid references to top level directory’s
contents of its sub—directories’ contents.

Adherence to this principle goes a long way
in supporting and encouraging:

@ highly partitioned development

® incremental construction

® simple single pass construction

® reduced (but still legitimate) testing
@ climination of cyclic dependencies
@ efficient builds

CBC.ca WebEd - 28 - Dec. 1st & 2nd, 2003

CBC.ca WebEd - 29 - Dec. 1st & 2nd, 2003

CBC.ca WebEd - 30 - Dec. 1st & 2nd, 2003

Zen & the Art of SW Maint. = = .
F.S.l.C. —

Zen & the Art of SW Maint. 5 = .
F.S.I.C. (2) . —

Zen & the Art of SW Maint. 5 = .
F.S.L.C. (3) ——

Nothing can jeopardize quality or delay
progress more than a missing or lost file!

Oh, except for a file that shouldn’t be there!!

® The major problem faced by the Y2K
projects was the inability to rebuild
products due to the loss of the source.

® The existence of a file that shouldn’t be
there will:
= obscure the loss of source
= obscure cyclic dependencies
= obscure build deficiencies
= possibly change the system’s semantics

File System Integrity Check

® Need process and supporting databases to
check integrity of source, object, and product
trees.

@ Source tree check should be run frequently.

® Object and product trees should be checked
as part of the build.

The Source Database

® Manifest of administered files

@ List of old sources — in VS but obsolete

@ List of unadministered sources (as small
a list as possible)

@ List of known temporary files

° Conventlons (patterns) for temporaries
e.g., "core.", " .

Source Check

® Produce lists of:

= potentially new sources — exist but not in
manifest and not known or recognized temp.

= missing files — in manifest but does not exist.
= files being edited
m recognized temporaries

® In case of error, take corrective action

(update database, create VS admin files,
remove files, ...) and repeat.

The Object/Product Database

® Superset list of object and product trees
® Exceptions for configurations

©® Normal deviations (e.g., man/cat?/*.1)

® Conventions (patterns) for temporaries
e.g., "core.*", "*", ...

Object/Product Check

® Produce lists of:
= potentially new files
= missing files — in database but does not exist
= recognized temporaries

® In case of error, take corrective action

(update database, remove files, ...) and
repeat!

® Use bare-metal and parallel builds to
check databases for discrepancies

CBC.ca WebEd - 31 - Dec. 1st & 2nd, 2003

CBC.ca WebEd - 32— Dec. 1st & 2nd, 2003

CBC.ca WebEd - 33 - Dec. 1st & 2nd, 2003

Zen & the Art of SW Maint. = = 1 [Zen & the Art of SW Maint. = = | [Zen & the Art of SW Maint. = = |
End of Part 1 s & The CORE System s & CORE: Introduction s &
Break Controlled Requirements Evaluation Actually that's it.

® Please be back by 3:00

CORE is a viewpoint perspective analysis
which can be applied on most types of systems
e.g., human, computer, mechanical

® system is partitioned into components,
roles, or viewpoints

® viewpoints are analysed w.r.t. to their
consumer/producer relationships with
other viewpoints, determining their:

m from (F) — sources of inputs
= input (I) — the required inputs
= processing (P)
= outputs (O) — processing products
m to (T) — destination or consumer of outputs
referred to as F.I.P.O.T. table.
® Analysis attempts to ensure connectivity
of collected tables.

= if Alpha produces X to be sent to Beta, then
Beta should be expecting to receive X from
Alpha.

All you need now is to learn how to create the
first cut at the tables and then how to evolve
and debug the resulting directed graph.

@ But we’ll do that as an exercise.

Break Out Exercise
You and your group represent one viewpoint.
In the hour allotted your group will:

@ pick a chair to keep your group to schedule
= an hour isn’t very long! If pick takes more
than 2 minutes, flip a coin.

® pick a presenter for tomorrow’s 8-10 minute
presentation of your group’s results

® formulate a brief mission statement for
your group’s viewpoint

CBC.ca WebEd - 35—

Zen & the Art of SW Maint. = = 1 [Zen & the Art of SW Maint. = = Zen & the Art of SW Maint. = -
CORE: Break out session (2) s & e CORE: Break out session (3) s & e The Development Process s & e

@ Create the FIPOT table for your view on
flip charts.

Think about what you consume/produce,
would like to have or do, or should do.

Don’t worry about getting it right — you can't
without seeing the other viewpoints.

Don’t bother editing at this time.

Don’t try to connect column entries — just
list them.

Try to write legibly so that table can be
read from anywhere in lecture room.

® Ensure that digital picture of your results
taken and mailed to Derek and dt@qef.com
before removing the flip charts.

® Presenter (with help if necessary) should
prepare single OHP slide of mission
statement and the FIPOT table for
presentation tomorrow afternoon.

= You will post your flip charts on the
lecture room wall.

Process to be considered is a production
release of an new system to handle NHL
playoffs.

@ Limit consideration to later phases

= assume that early project descriptions
are in place

= Implementation is well underway and full
project integration almost ready.

Viewpoints are:

® Production & Operations Management
® Release Management

® Project Team Leaders

® Quality Assurance

® Developers

@ Development is a lot more than cutting code.

® The code cut must be:
= documented,
m tested, possibly creating new tests,
= delivered with documentation describing
changes,
in such a way that if doesn’t interfere
with other teams’ work.

® Developers must view their product as
being the source, that is delivered in a
timely and expedient manner to the build
team for smooth and effective integration
into the code baseline.

® When source is delivered, the submitting
developer is making a statement that the
code is ready for publication and making
commitment to support (i.e., fix) his/her
changes.

@ Saying that it “works for me” is irrelevant.
= It has to work for your client (the build team).

CBC.ca WebEd - 37 - Dec. 1st & 2nd, 2003

CBC.ca WebEd - 38 - Dec. 1st & 2nd, 2003

CBC.ca WebEd -39 - Dec. 1st & 2nd, 2003

Zen & the Art of SW Maint. = = .
Develoemem: Change Control e

CBC.ca source is under CVS control
©® Why? What does it do for you?

® Do you know how to perform the necessary
functions w.r.t. source?

@ And are you sure that everybody else uses
the same functions?

® Are these practices safe? foolproof?

® Do you have a mechanism whereby devel-
opers can use a *VS to save progress
without interfering with others?

= First two points of SDG 4.2 might be
contradictory or counter—productive.

® And why is something as important as
source management left until section 4?
= The use or spaces in code is in 1.1!

Jeremy, good stuff. Far better than | have seen
at many other organizations.

My quibble is that coding styles are an appendix
to the “How We Get Things Done” guide.

Zen & the Art of SW Maint. 5 = .
Develoemem: Tesling S %@

Zen & the Art of SW Maint. 5 = .
Conclusions & Q&A ¢ s e

More Gratuitous Quibbles with the SDG

® Must ensure objectives for and overall
approach to Q.A. clearly understood

® Must emphasize that testing must be
designed and encoded into system from
outset.

= Q.A. group must be involved from very
beginning.
® Quality of testing itself must be validated.
® Make testing as easy as possible to do.
® Make sure testing is audited.

® Ask for help doing your testing.
= rob@iron (mips) found a problem that
dt@gold (mips), dt@silver (sun),
dt@chlorine (sco — a noxious gas)
didn’t find, but dt@argon (mips) did.

"We want to make good time, but for us
now this is measured with the emphasis
on “good” rather than on “time” and
when you make that shift in emphasis

the whole approach changes."

Robert M. Pirsig
pp4, Zen and the Art of
Motorcycle Maintenance

Pirsig was writing about taking secondary

roads, but the view is applicable to all sorts

of human activities including software

development.

@ In fact in the realm of software an emphasis
on “good” often leads to better (both
qualitatively and quantitatively) times.

CBC.ca WebEd —40 - Dec. 1st & 2nd, 2003

CBC.ca WebEd —41 - Dec. 1st & 2nd, 2003

CBC.ca WebEd —42 - Dec. 1st & 2nd, 2003

